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Top Pair Production At The LHC

* [nteresting signal. Rich phenomenology.
Important in new physics searches...

* Top quark pairs are copiously produced at the LHC
oy x (Vs =T7TeV) ~ 170 pb
oy x (Vs = 8TeV) ~ 250 pb
ot x (Vs = 14TeV) ~ 950 pb

e Abundant statistics. Expected experimental
error ~5%

® Need theoretical predictions with similar
accuracy

» Requires computations through higher
orders in perturbation theory
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Measurement of the tt production cross section in the
dilepton channel in pp collisions at /s = 8 TeV

The CMS Collaboration*

Abstract

The top-antitop quark (tt) production cross section is measured in proton-proton col-
lisions at /s = 8 TeV with the CMS experiment at the LHC, using a data sample cor-
responding to an integrated luminosity of 5.3 fb™!. The measurement is performed
by analysing events with a pair of electrons or muons, or one electron and one muon,
and at least two jets, one of which is identified as originating from hadronisation of a
bottom quark. The measured cross section is 239 £ 2 (stat.) £ 11 (syst.) & 6 (lum.) pb,
for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the
standard model.

Published in the Journal of High Energy Physics as doi:10.1007/JHEP02 (2014) 024.

239 £ 2 (stat.) £ 11 (syst.) £ 6 (lum.)

(©2014 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

*See Appendix A for the list of collaboration members
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Top Pair Production At The LHC: State Of The Art

eNI.O QCD corrections: Ellis, Dawson, Nason; Beenakker, Kuyf, van Neerven, Smith ‘89

e NL.O EW corrections: Beenakker, Bernreuther, Denner, Fuecker, Hollik, Kao, Kollar,
Kiihn, Ladinsky, Mertig, Moretti, Nolten, Ross, Sack, Scharf, Si, Uwer, Wackenroth, Yuan

® Threshold resummation and Coulomb corrections: Ahrens, Banfi, Berger, Bonciani,

Catani, Contopanagos, Czakon, Ferroglia, Frixione, Kidonakis, Kiyo, Kiihn, Laenen, Mangano,
Mitov, Moch, Nason, Neubert, Pecjak Ridolfi, Steinhauser, Sterman, Uwer, Vogt, Yang

Yield a theoretical uncertainty of ~10% <

To match theory and experimental accuracies at the LHC, cross sections for

top pair production must be calculated through NNLO in pQCD
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Top Pair Production At The LHC: State Of The Art

 Calculation of the total NNLO cross section completed [Czakon, Fiedler, Mitov '13]

» Combined with NNLL resummation

» Theoretical and experimental uncertainties of similar sizes (percent level)
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Difterential Top Pair Production

e Differential distributions probe the dynamics of top quark production

» Important in order to search for new physics as deviations from SM predictions

CMS, 5.0 fb'at\'s =7 TeV CMS, 5.0 fb'at\'s =7 TeV
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Need NNLO predictions for d_;( with X = p%, %, o, y', mys

e Approximate results available, including decays (A. Broggio’s talk)
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Difterential Top Pair Production

® Goal: fully differential event generator for t¢ production at NNLO

® This talk:
» Status of our NNLO calculation for the ¢¢ channel (leading-color + Nj only)

Ne

C

A C E B
dsgwio = NeCr | N2A+ B+ o4 Ni(NoDi+ 1)+ N (NoDy o+ 12

C

+NZF, + NN, Fyy, + N,th]

» Preliminary differential distributions as a proof of principle
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Ingredients For Top Pair Production At NNLO

e LO and NLO fully differential cross sections
» Known [Ellis, Dawson, Nason ‘89; Beenakker, Kuyf, van Neerven, Smith '89]
» Re-derived using NLLO antenna subtraction [GA, Gehrmann-De Ridder '11]
. —"Gﬁ'ﬁ'ﬁaﬁ'ﬁ'ﬁﬁ —
* Two-loop 2—+2 matrix elements S

» Use analytic results (A. von Manteutfel’s talk)
[ Bonciani, Ferroglia, Gehrmann, Matitre, v. Manteuffel, Studerus]

0999500099 b——

® One-loop 2+ 3 matrix elements CCOOECEa06——

» Obtained numerically with Openl.oops
[ Cascioli, Meierhofer, Pozzorini] 9999

v Color structure handled algebraically 0909999099 ——

v Quadruple precision evaluation in soft limit

LY,
® Tree-level 24 matrix elements >4DDDD<
(N
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Ingredients For Top Pair Production At NNLO

. ~RR ~RV ~MF,1 VUV ~MF?2
donyNLO = / doNNLo T+ / (dUNNLO T dUNNLo) + / (dUNNLo T dUNNLO)
Add, dds dd,

e donNro, doNNro » explicit [R poles from loop integration

implicit IR poles from PS integration over
single and double unresolved regions

Need a procedure to i1solate and cancel all IR singularities, and assemble all
p g
parts in a parton-level event generator
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Antenna Subtraction At NNLO

A AS
donnNLO :/ (dUNNLo dUNNLO)
dd,

MF.1 . S.1
+/d<1> (dUNNLo doXo +doy LO+/1d NNLO)
3

MF.2 R . S.2
+/d<I> (dUNNLO+d NNLO+/d NNLO“"/Zd NNLO)
2

¢ Introduce double real and real-virtual subtraction terms d6% y .0 » d6%% ;o and add
them back in integrated form

* The integrated double real subtraction term i1s split as
. 5,1 . 5,2
/ doNNLo = / /d ONNLO T / /dUNNLo
ST AP 41 d®,,

e Fach PS integrand 1s free of explicit poles, well behaved 1n singular regions, and can
be integrated numerically in D=4
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Double Real Subtraction Terms

Use a color decomposition of the double real (2 &+ (m+2)) amplitude

A

doNN o =NiNLo > APmia(Dss- o Pmrai 1, p2) Mo, 1 (1,2,3, )PS5 (ps, .. pmya)

perms

e |M),  ,I%singular in single and double unresolved limits (soft, collinear, ...)

» Factorization in IR singular limits well known. Described by universal unresolved
factors [Campbell, Glover '98; Catani Grazzini '99]. E.g. single and double soft limits:

P —0

(v oy DisDjy Dy - )7 —> S, 4, k)Mo 5 (o Dis DRy - )|

Pj Pk —0

(v oy Dis Dy DRy DLy - - )P = Sy 4,k DIMoia (oo 0iy 1y - -]

e Unresolved factors captured by three and four—parton tree-level antenna functions

O(s 5 2
Xg(fl,], k) _ Sz ‘M3(17]7k)|

. MG, gk, DI
P IMY(T KPP X304,k 1) = 5i; 4

ML, D
One unresolved parton (j) Two unresolved partons (j,k)
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Double Real Subtraction Terms

o d&}% ~ro contains three different antenna structures

» X2 (i, 5, k)| Mpmas(....p1, 0K, - 2)|? > Single unresolved limits

Color-connected double unresolved

> X9(i, 5.k, D)Mo (..o propLs - ) .
limits

(Almost) Color-unnconnected
double unresolved limits

> XXM, ol

¢ 3—+2 and 42 on-shell momentum mappings

{pi,pj, o6} = {p1,Px} {pi,pj, 6,1} = {pr,pr}

» Conserve momentum 1n reduce matrix elements

» Collapse to appropriate kinematics in each unresolved limit
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Real-Virtual Subtraction Terms

Use a color decomposition of the tree and loop (2 =& (m+1)) amplitudes

A

dUNNLo —N NNLO Z dq’m+1(p3,---»Pm+3,p1,p2)\Mm+3(i 2,3 )’2J(m+1)(l?37---

perms

 [M;,,5|? singular in single unresolved limits. Well known factorization

[Bern, Catani, Dixon, Dunbar, Kosower, Uwer, ...]

j unresolved

M +3|2 —  Sing” x [M;, 5| + Sing" x M2, ,|?

° Accordmgly, dé); N N Lo 18 constructed as

‘Mm—I—S( "7pi7pjapk7"°)‘2 _>Xi(3)(27]7 )‘Mm—i—Q( "7pfapK7"°)‘2
+X§(27]7 )‘Mm—|—2( "7p17pK7°°')‘2

® One-loop antennae

X;5(i,5,k) = Sijerx
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Integrated Subtraction Terms

Subtraction terms must be integrated and added back in lower multiplicity final states

® Phase space factorization (different in f-f, 1-f, and 1-1 cases). E.g.

d®,,y2(. .. 0 Dj, PRsDL, -~ ) =A@ (.01 0L, - ) X dA®x, (Pis DS DR, D)

* [ntegrated antennae are the inclusive integrals

1

Xiiri (€ 81L) = AL /d(I)Xijk;l(piapj7pkapl)X2(i7jakal)

* [ntegrated subtraction terms given by

~ C(€2dDpn(- ., p1,PLs - )X (e 51) Mumsa (o1, )P prprs - )

d / d6X'¥ro obtained analogously
1
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NNLO Antenna Subtraction With Massive Quarks

Slide from J. Currie’s talk

NNLO dijets at the LHC

Antenna Subtraction

Antenna Subtraction Toolbox

Many tools needed for implementation:

» final-final phase space mappings [Kosower 03]

» FF X§, Xff, X§ antennae [Gehrmann-De Ridder, Gehrmann, Glover, 04, ’05]
» integrated FF antennae [Gehrmann-De Ridder, Gehrmann, Glover, '05]

= et

’07, Weinzierl '08]

e — 3 jets at NNLO [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich,

True for observables with

Since then, extended for hadronic initial-states:
» initial-final 4 initial-initial mappings [palco, Gehrmann, Maitre, '07] maSSICSS Partons
> integrated IF X::;l, Xg [Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, '10]

: 0
> lntegrated II X4 [Boughezal, Gehrmann-De Ridder, Ritzmann, ’11. Gehrmann, Ritzman

'12]

> integrated 11 Xg} [Gehrmann, Monni, '11]

All tools exist for hadron-hadron scattering

[Glover, Pires, ’10. Gehrmann De-Ridder, Glover, Pires, ’12. Gehrmann De-Ridder, Gehrmann,

Glover, Pires ,’13. JC, Glover, Wells, ’13. JC, Gehrmann De-Ridder, Glover, Pires, '14.]

Challenge: extend NINLO antenna subtraction method to treat massive quarks.

® Re-derive phase space mappings and factorizations

* Compute and integrate NLO and NINLO massive antennae

G. Abelof Towards differential top pair production at NNLO




Integrated Massive Antennae

e Massless antennae: all known | Boughezal, Daleo, Gehrmann, Gehrmann-De Ridder, Glover,
Luisoni, Maitre, Ritzmann |

e Massive antennae: incomplete

» Three parton tree-level: all known | Gehrmann-De Ridder, Ritzmann '09;
GA, Gehrmann-De Ridder '11]

» Four parton tree-level

» Final-final: ./422 990 Qq 0 [Bernreuther Bogner, Dekkers]

» Initial-final: Bq 0q'q gv 7.0q3’ Q - |GA, Dekkers, Gehrmann-De Ridder '12]
» More integrated antennae needed for qq — tt+ X at NNLO: A? .., A; o,

pdl O NG

/ 4, /Q;):: / d®, 2Re /©% 66666@\

» Multiple scales: m7,,, q°, pi* q

Pi

» Coupled differential equations for master integrals

G. Abelof Towards differential top pair production at NNLO




Subtraction Terms For Top Pair Production

In The Quark-Antiquark Channel

Where we now stand:

Leading color

~R ~ S
/ (dUNNLo - dUNNLo)
dd,
~RV AT
/ (dUNNLO = dUNNLo)
E d(bg

~VV AU
!/) (dUNNLO"dUNNLO)
dd,

(GA, Gehrmann-De Ridder, Meierhéfer, Pozzorini ‘14]
'GA, Gehrmann-De Ridder ‘11]
|GA, Gehrmann-De Ridder (in preparation) ]

0

0 0gg and Ag o, still missing. In progress.

* Integrated massive antennae A

Towards differential top pair production at NNLO




Double Real Contributions

e Subtraction terms for partonic processes
» q7 — ttq'q [GA, Gehrmann-De Ridder '11]
» qq — tt_gg (leading-color only) | GA, Gehrmann-De Ridder, Meierhéfer, Pozzorini '14]

® Check of convergence
» Generate events near every singular region
» Control proximity to singularities with a control variable = (specific to each limit)

» For each event, compute
Double soft limit of qq — ttgg

~RR
Srp = donNNLO
— | 325
doXnro

] — x=10

7
 SE— — 77 X= 3
[

1 ‘ — x=(§-sq,1-2m‘)/s E

.S ~RR
» Convergence of A3 .o to d6lif
observed in cumulative histograms in 6z

Cumulative number of events

e Similar (good) convergence observed 1n all
single and double unresolved limits
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Real Virtual Contributions

 Partonic process g7 — ttg at one-loop

* One-loop amplitudes computed
» Numerically with Openl.oops for leading-color contributions

» Analytically for N pieces
® Subtraction terms constructed and implemented
2 Leading-color: | GA, Gehrmann-De Ridder, Meierhéfer, Pozzorini '14]

» Ni: [GA, Gehrmann-De Ridder (in preparation)]

® Pointwise cancellation of explicit IR poles checked analytically in both cases

. . ~MF,1 ~S.1
Poles (daf}K,LO — da}\/,}g\,LO + daNNLO + /dO’NNLO) =0
1

Towards differential top pair production at NNLO




Real Virtual Contributions

e Check of convergence. Analogous to double real check
» Good convergence observed in Nj piece 1n soft and collinear limits
» Good convergence observed in collinear limit of leading color piece
» Convergence 1n soft limit of leading-color piece only achieved evaluating d6i%;; 5

1n quadruple precision

Finite(do o)

— 1
Finite(d i nro)

ORV =

Soft limit (leading-color) Soft limit (N))

T 1 1 X=(5-Sa,-2m°)/s | — —

- [ e L x=10" o e e

] = k=10 o

(— X=1 0_5 ]

x=1 0_6

Cumulative number of events
Cumulative number of events

1 1 1 1 1 1
10710 10°° 108 107 10°® 10 107 1078 1072 108 107
6F(V
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Real Virtual Contributions

Only “bad points” are (re)evaluated by Openloops in quadruple precision

~ RV AT
(dUNNLo - dUNNLO) ?

* Fraction of quadruple precision evaluation in /
d®s

* s the integration stable?

Stability check: Evaluate R = (aﬁ‘]/\, 10— ONN LO) /o1o as a function of Yeuwr = 5/ V3

® [ntegration is stable

e R has a plateau for yeuwr < yoy; ~ 1077
® Strong check of our subtraction terms

* We can run with yeut ~ 107% Only
~0.01% points require quadruple
precision.

e Efficient evaluation in double
precision for the vast majority of
points

| |
-4 -3.5
log1o(Yeutr)
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Double Virtual Contributions

The ultimate check:

Poles (dUNNLo _I_dA%]gl?O "‘/1dUNNLo /dANNLO) =0

* Pole cancellation verified analytically in NI piece

PolellC =
Simplify(
Simplify[Coefficient [TwoLoopPolesLC, ep, -1] Delta[l - x1] Delta[l - x2] + Coefficient [OneTimesOneLoopPoleslC, ep, -1] Delta[l - x1] Delta[l - x2] -
Coefficient[SubTermLC, ep, -1]] //. RepsLogsLC]

» Non-trivial check on new integrated massive antennae

» Proves applicability of NNLO antenna subtraction to reactions with massive
fermions

® Pole cancellation in leading color contributions in progress

G. Abelof Towards differential top pair production at NNLO




Preliminary Results

® Preliminary results for pp(¢q) — tt + X (Njonly)
» /s =8TeV
» Miop = 173.5 GeV
P U= Miop

» MSTW2008NNLO PDF sets

Warning: The following NINLO results contain the N contributions to the ¢
channel only. They are presented as a proof of principle. Strong

phenomenological conclusions are not recommended.
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Preliminary Results

pp(qq) — tt + X

Towards differential top pair production at NNLO




Preliminary Results

|
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Could NNLO effects have an impact on our theory prediction for Arp at Tevatron?
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Summary And Outlook

e [Fully differential NNLO calculation for ¢t production in the ¢¢ channel within
reach (leading-color + fermionic contributions)

* Double real contributions: subtraction terms implemented and tested
¢ Real-virtual contributions:

» Subtraction terms implemented and tested

» Precise and stable one-loop amplitudes from Openl.oops in leading-color part
® Double virtual contributions:

» Two-loop amplitudes available (for leading color and fermionic pieces)

» Analytic pole cancelation in Nj part

e Event generator implemented and working (with Nj part for the moment)

Outlook

e Complete leading-color double virtual contributions in ¢g channel

® Phenomenology in ¢¢ channel. Arg, main goal

® Include 99 and ¢g channels

G. Abelof Towards differential top pair production at NNLO




